Cleveland Monsters

GP: 11 | W: 7 | L: 4 | OTL: 0 | P: 14
GF: 46 | GA: 37 | PP%: 22.00% | PK%: 82.22%
GM : Patrick Jacques | Morale : 63 | Team Overall : 64
Your browser screen resolution is too small for this page. Some information are hidden to keep the page readable.

Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SP
1Ryan DonatoXXX100.00646093767572727090687467847373094690
2Dylan StromeX100.00636088747968686989697068807272094680
3Christoffer EhnX100.00746093727681816482666772777373084680
4Anders BjorkXX100.00676094737471716693686869787373095670
5Nikita SoshnikovX100.00826089727273736466656872787575083670
6Jack RoslovicXX100.00656093747570706780696967797272094670
7Victor OlofssonXX100.00626074726661616865687067806262083650
8Michael DalColleX100.00636090697867676365646767777070094640
9Rourke ChartierX100.00666076666763636174626667766161082620
10Jordan KyrouXX100.00616076676663636281646766776060094620
11Justin KloosXX100.00606060656560606065626565756262088610
12Vitaly AbramovX100.00666078666260606065626565756161059610
13Erik CernakX100.00956683748580807165736982798282094740
14Vince DunnX100.00656090757797977265766871788282094720
15Travis SanheimX100.00676087737684847065726772778383094700
16Rasmus Andersson (R)X100.00666087718076766665676674768383094680
17Libor SulakX100.00786068707061616565656574757272082660
18Benjamin GleasonX100.00636078726761616865706568757070094650
Scratches
1Turner ElsonX100.00504550605050506050606060605050026550
2Klim KostinX100.00504550605050506050606060605050084550
3Matthew PhillipsX100.00504550605050506050606060605050019550
4Anthony AngelloX100.00504550605050506050606060605050019550
5Axel Jonsson-FjallbyX100.00504550605050506050606060605050019550
6Francis PerronX100.00504550605050506050606060605050022550
7Parker WotherspoonX100.00505050655050506050605560555050034550
8Lucas CarlssonX100.00504550655050506050605560555050019550
TEAM AVERAGE100.0063567368666464646665656772656507163
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1Oscar Dansk100.0082818184838585858585806262094820
2Andrew Shortridge (R)100.0075757579757575757575757070085740
Scratches
1Elvis Merzlikins100.0071717176717171717171717170056710
TEAM AVERAGE100.007676768076777777777775686707876
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary
Doug Weight85768987777268USA4721,575,000$


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOS GP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Ryan DonatoCleveland Monsters (CLB)C/LW/RW111061632014847141821.28%120418.572241046000001145.45%11203001.5700000221
2Dylan StromeCleveland Monsters (CLB)C11312153008143512208.57%320318.49112646000001055.67%194101001.4700000010
3Victor OlofssonCleveland Monsters (CLB)LW/RW11781511008529102624.14%417315.78235735000002030.77%13222001.7300000121
4Vince DunnCleveland Monsters (CLB)D1111213600991916155.26%828425.89145353000113000.00%01412000.9100000001
5Jack RoslovicCleveland Monsters (CLB)C/RW11310133001592331513.04%520218.44033646000000028.57%7102001.2800000110
6Christoffer EhnCleveland Monsters (CLB)C114610120102120141920.00%723321.272132350000552054.67%214133000.8500000010
7Erik CernakCleveland Monsters (CLB)D1136955420462828151110.71%1127925.40134652000016010.00%0720000.6400112100
8Anders BjorkCleveland Monsters (CLB)LW/RW11268219513123010196.67%317716.1411210350000201071.43%14102000.9000100000
9Michael DalColleCleveland Monsters (CLB)LW113363001171771717.65%112611.53000000000130014.29%751000.9500000000
10Travis SanheimCleveland Monsters (CLB)D11235-622101018116718.18%1522520.47112229000019000.00%0124000.4400101000
11Nikita SoshnikovCleveland Monsters (CLB)RW112352201582051610.00%319217.48000000003550042.86%14112000.5200000100
12Jordan KyrouCleveland Monsters (CLB)C/RW112353135510100520.00%21089.9000000000000050.00%6833000.9200010000
13Benjamin GleasonCleveland Monsters (CLB)D110333001057230.00%415213.8401122800000000.00%042000.3900000000
14Vitaly AbramovCleveland Monsters (CLB)LW11202-10073173411.76%0928.430000000000000.00%172000.4300000000
15Rasmus AnderssonCleveland Monsters (CLB)D11112-240725121068.33%1421719.8000000000151000.00%0614000.1800000001
16Rourke ChartierCleveland Monsters (CLB)C11011-1753516080.00%0999.0500000000040058.97%3941000.2000100000
17Libor SulakCleveland Monsters (CLB)D11101660131152120.00%1717415.8800000000150000.00%0314000.1100000100
18Justin KloosCleveland Monsters (CLB)C/RW11011-134201579280.00%0938.530000000000000.00%220000.2100220000
Team Total or Average1984684130301756521920535513121812.96%98324316.381120315440900063027253.08%58416388000.8000643774
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Oscar DanskCleveland Monsters (CLB)117310.8713.356630037287144000.0000110001
Team Total or Average117310.8713.356630037287144000.0000110001


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Rookie Weight Height No Trade Available For Trade Force Waivers Contract StatusType Current Salary Salary Cap Salary Cap Remaining Exclude from Salary Cap Link
Anders BjorkCleveland Monsters (CLB)LW/RW221996-08-05 11:40:49 AMNo187 Lbs6 ft0NoNoNo2ELCPro & Farm925,000$0$0$No
Andrew ShortridgeCleveland Monsters (CLB)G241995-04-26 12:26:09 PMYes185 Lbs6 ft4NoNoNo1RFAPro & Farm925,000$0$0$No
Anthony AngelloCleveland Monsters (CLB)C231996-03-06 3:14:37 AMNo196 Lbs6 ft4NoNoNo2RFAPro & Farm833,750$0$0$No
Axel Jonsson-FjallbyCleveland Monsters (CLB)LW211998-02-10 3:52:31 AMNo170 Lbs6 ft0NoNoNo3ELCPro & Farm860,000$0$0$No
Benjamin GleasonCleveland Monsters (CLB)D211998-05-03 1:09:25 PMNo185 Lbs6 ft1NoNoNo2ELCPro & Farm761,666$0$0$No
Christoffer EhnCleveland Monsters (CLB)C231996-04-05 11:45:04 AMNo181 Lbs6 ft3NoNoNo2RFAPro & Farm759,167$0$0$No
Dylan StromeCleveland Monsters (CLB)C221997-03-07 5:08:55 AMNo185 Lbs6 ft3NoNoNo1ELCPro & Farm863,333$0$0$No
Elvis MerzlikinsCleveland Monsters (CLB)G251994-04-13 11:46:36 AMNo187 Lbs6 ft3NoNoNo1RFAPro & Farm925,000$0$0$No
Erik CernakCleveland Monsters (CLB)D211997-05-28 11:47:51 AMNo203 Lbs6 ft3NoNoNo2ELCPro & Farm697,500$0$0$No
Francis PerronCleveland Monsters (CLB)LW231996-04-18 3:54:10 AMNo166 Lbs6 ft0NoNoNo1RFAPro & Farm703,333$0$0$No
Jack RoslovicCleveland Monsters (CLB)C/RW221997-01-29 4:34:23 PMNo182 Lbs6 ft1NoNoNo1ELCPro & Farm894,166$0$0$No
Jordan KyrouCleveland Monsters (CLB)C/RW211998-05-08 3:54:40 PMNo179 Lbs6 ft0NoNoNo3ELCPro & Farm758,333$0$0$No
Justin KloosCleveland Monsters (CLB)C/RW251993-11-30 12:11:12 PMNo175 Lbs5 ft9NoNoNo2RFAPro & Farm792,500$0$0$No
Klim KostinCleveland Monsters (CLB)RW201999-05-05 3:56:18 PMNo196 Lbs6 ft3NoNoNo3ELCPro & Farm894,166$0$0$No
Libor SulakCleveland Monsters (CLB)D251994-03-04 11:53:27 AMNo190 Lbs6 ft2NoNoNo2RFAPro & Farm833,750$0$0$No
Lucas CarlssonCleveland Monsters (CLB)D211997-07-05 3:56:13 AMNo190 Lbs6 ft0NoNoNo3ELCPro & Farm792,500$0$0$No
Matthew PhillipsCleveland Monsters (CLB)C211998-04-06 3:57:38 PMNo140 Lbs5 ft7NoNoNo3ELCPro & Farm733,333$0$0$No
Michael DalColleCleveland Monsters (CLB)LW221996-06-20 6:20:57 AMNo198 Lbs6 ft3NoNoNo1ELCPro & Farm863,333$0$0$No
Nikita SoshnikovCleveland Monsters (CLB)RW251993-10-14 11:44:51 AMNo183 Lbs5 ft11NoNoYes2RFAPro & Farm800,000$0$0$No
Oscar DanskCleveland Monsters (CLB)G251994-02-28 12:02:10 PMNo201 Lbs6 ft3NoNoYes3RFAPro & Farm675,000$0$0$No
Parker WotherspoonCleveland Monsters (CLB)D211997-08-24 11:58:07 AMNo172 Lbs6 ft0NoNoNo2ELCPro & Farm732,500$0$0$No
Rasmus AnderssonCleveland Monsters (CLB)D221996-10-28 2:30:04 PMYes212 Lbs6 ft0NoNoNo1ELCPro & Farm786,667$0$0$No
Rourke ChartierCleveland Monsters (CLB)C231996-04-03 3:52:26 AMNo181 Lbs5 ft11NoNoNo1RFAPro & Farm697,500$0$0$No
Ryan DonatoCleveland Monsters (CLB)C/LW/RW231996-04-09 8:03:12 AMNo181 Lbs6 ft1NoNoNo1RFAPro & Farm900,000$0$0$No
Travis SanheimCleveland Monsters (CLB)D231996-03-29 2:57:48 PMNo181 Lbs6 ft3NoNoNo1RFAPro & Farm863,333$0$0$No
Turner ElsonCleveland Monsters (CLB)LW261992-09-13 1:00:36 PMNo185 Lbs6 ft0NoNoNo1RFAPro & Farm700,000$0$0$No
Victor OlofssonCleveland Monsters (CLB)LW/RW231995-07-18 3:57:32 AMNo172 Lbs5 ft11NoNoNo2RFAPro & Farm767,500$0$0$No
Vince DunnCleveland Monsters (CLB)D221996-10-29 12:01:13 PMNo187 Lbs6 ft0NoNoNo2ELCPro & Farm722,500$0$0$No
Vitaly AbramovCleveland Monsters (CLB)LW211998-05-08 3:58:59 PMNo170 Lbs5 ft9NoNoNo3ELCPro & Farm730,833$0$0$No
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
2922.62183 Lbs6 ft11.86799,713$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Ryan DonatoDylan StromeJack Roslovic41005
2Victor OlofssonChristoffer EhnNikita Soshnikov39023
3Michael DalColleJordan KyrouAnders Bjork15014
4Vitaly AbramovRourke ChartierJustin Kloos5023
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
1Vince DunnErik Cernak50023
2Travis SanheimRasmus Andersson35023
3Benjamin GleasonLibor Sulak15023
4Vince DunnErik Cernak0023
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Ryan DonatoDylan StromeJack Roslovic75005
2Anders BjorkChristoffer EhnVictor Olofsson25005
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
1Vince DunnErik Cernak75005
2Travis SanheimBenjamin Gleason25005
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
1Christoffer EhnNikita Soshnikov70050
2Rourke ChartierMichael DalColle30050
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
1Libor SulakRasmus Andersson70050
2Travis SanheimErik Cernak30050
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
1Christoffer Ehn60050Libor SulakRasmus Andersson50050
2Rourke Chartier40050Travis SanheimErik Cernak50050
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
1Dylan StromeRyan Donato50005
2Jack RoslovicVictor Olofsson50005
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
1Vince DunnErik Cernak60014
2Travis SanheimRasmus Andersson40023
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Ryan DonatoDylan StromeJack RoslovicVince DunnTravis Sanheim
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
Anders BjorkChristoffer EhnNikita SoshnikovErik CernakRasmus Andersson
Extra Forwards
Normal PowerPlayPenalty Kill
Jack Roslovic, Jordan Kyrou, Christoffer EhnAnders Bjork, Justin KloosAnders Bjork
Extra Defensemen
Normal PowerPlayPenalty Kill
Travis Sanheim, Vince Dunn, Benjamin GleasonTravis SanheimLibor Sulak, Vince Dunn
Penalty Shots
Ryan Donato, Dylan Strome, Jack Roslovic, Anders Bjork, Jordan Kyrou
Goalie
#1 : Oscar Dansk, #2 : Andrew Shortridge
Custom OT Lines Forwards
Dylan Strome, Ryan Donato, Jack Roslovic, Victor Olofsson, Christoffer Ehn, Anders Bjork, Anders Bjork, Nikita Soshnikov, Jordan Kyrou, Rourke Chartier, Michael DalColle
Custom OT Lines Defensemen
Erik Cernak, Vince Dunn, Travis Sanheim, Rasmus Andersson, Benjamin Gleason


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
OverallHomeVisitor
# VS Team GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Manitoba Moose734000002630-4431000001817130300000813-560.42926477300151813022911012012321846610813535925.71%29582.76%012223452.14%11320156.22%7514950.34%2611682279317587
2Milwaukee Admirals440000002071322000000133102200000074381.000203757001518130126110120123210332678415213.33%16381.25%012223452.14%11320156.22%7514950.34%2611682279317587
Total1174000004637965100000312011523000001517-2140.6364684130001518130355110120123228798175219501122.00%45882.22%012223452.14%11320156.22%7514950.34%2611682279317587
_Since Last GM Reset1174000004637965100000312011523000001517-2140.6364684130001518130355110120123228798175219501122.00%45882.22%012223452.14%11320156.22%7514950.34%2611682279317587
_Vs Conference1174000004637965100000312011523000001517-2140.6364684130001518130355110120123228798175219501122.00%45882.22%012223452.14%11320156.22%7514950.34%2611682279317587
_Vs Division1174000004637965100000312011523000001517-2140.6364684130001518130355110120123228798175219501122.00%45882.22%012223452.14%11320156.22%7514950.34%2611682279317587

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
1114L246841303552879817521900
All Games
GPWLOTWOTL SOWSOLGFGA
117400004637
Home Games
GPWLOTWOTL SOWSOLGFGA
65100003120
Visitor Games
GPWLOTWOTL SOWSOLGFGA
52300001517
Last 10 Games
WLOTWOTL SOWSOL
630100
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
501122.00%45882.22%0
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
11012012321518130
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
12223452.14%11320156.22%7514950.34%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
2611682279317587


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
2 - 2018-09-176Milwaukee Admirals1Cleveland Monsters6WBoxScore
4 - 2018-09-1914Milwaukee Admirals2Cleveland Monsters7WBoxScore
6 - 2018-09-2122Cleveland Monsters3Milwaukee Admirals1WBoxScore
8 - 2018-09-2330Cleveland Monsters4Milwaukee Admirals3WBoxScore
16 - 2018-10-0160Manitoba Moose5Cleveland Monsters6WBoxScore
18 - 2018-10-0364Manitoba Moose6Cleveland Monsters7WBoxScore
20 - 2018-10-0568Cleveland Monsters4Manitoba Moose5LXBoxScore
22 - 2018-10-0772Cleveland Monsters2Manitoba Moose3LBoxScore
24 - 2018-10-0976Manitoba Moose2Cleveland Monsters3WBoxScore
26 - 2018-10-1180Cleveland Monsters2Manitoba Moose5LBoxScore
28 - 2018-10-1384Manitoba Moose4Cleveland Monsters2LBoxScore



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2
Arena Capacity20001000
Ticket Price4525
Attendance11,8525,969
Attendance PCT98.77%99.48%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueArena CapacityTeam Popularity
32 2970 - 99.01% 157,920$947,517$3000110

Expenses
Year To Date ExpensesPlayers Total SalariesPlayers Total Average SalariesCoaches Salaries
0$ 2,319,166$ 2,166,916$ 0$
Salary Cap Per DaysSalary Cap To DatePlayers In Salary CapPlayers Out of Salary Cap
0$ 0$ 0 0

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
0$ 0 0$ 0$




OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
Playoff
20181174000004637965100000312011523000001517-2144684130001518130355110120123228798175219501122.00%45882.22%012223452.14%11320156.22%7514950.34%2611682279317587
20181174000004637965100000312011523000001517-2144684130001518130355110120123228798175219501122.00%45882.22%012223452.14%11320156.22%7514950.34%2611682279317587
Total Playoff221480000092741812102000006240221046000003034-4289216826000303626071022024024645741963504381002222.00%901682.22%024446852.14%22640256.22%15029850.34%523336454187350174