´╗┐

Milwaukee Admirals

GP: 4 | W: 0 | L: 4 | OTL: 0 | P: 0
GF: 7 | GA: 20 | PP%: 18.75% | PK%: 86.67%
GM : Mario Lessard | Morale : 21 | Team Overall : 61
Your browser screen resolution is too small for this page. Some information are hidden to keep the page readable.

Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SP
1Mike CammalleriXX100.00686189797090907384757169819797029730
2Ryan Carpenter (A)XX100.00778290737677776783677174817878085690
3Kevin Porter (A)X100.00726095687362626072626570758585082650
4Mitch CallahanXX100.00636095687461616065626566757777082630
5C.J. SmithX100.00606078676660606265656565756262084620
6Andrew AgozzinoXX100.00616078656660606066626565756464057610
7Andrew OglevieX100.00504550605050506050606060605050084550
8Juuso IkonenX100.00504550605050506050606060605050062550
9Jacob Lucchini (R)XX100.00504550605050506050606060605050062550
10Gage QuinneyXX100.00504550605050506050606060605050049550
11Eric Gryba (C)X100.00958066728475756865696678769393054710
12Aaron NessX100.00656083727163636765696574758989041670
13Mitch ReinkeX100.00606078706660606565656572757171083640
14Michael DowningX100.00504550655050506050605560555050082550
15Robin NorellX100.00504550655050506050605560555050082550
16Michal MoravcikX100.00504550655050506050605560555050082550
Scratches
1Marian StudenicX100.00504550605050506050606060605050035550
2Scott EansorX100.00504550605050506050606060605050026550
3Travis BarronX100.00504550605050506050606060605050020550
4Ilya MikheyevXX100.00504550605050506050606060605050051550
5Vili SaarijarviX100.00504550655050506050605560555050021550
6Will BorgenX100.00504550655050506050605560555050021550
TEAM AVERAGE100.0058536465595757625863626466626205860
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1Pheonix Copley100.0085838388858281828281837474083820
2Stuart Skinner100.0075757579757575757575755050038730
Scratches
TEAM AVERAGE100.008079798480797879797879626206178
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary
Bob Hartley67627168878249CAN5831,750,000$


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOS GP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Mike CammalleriMilwaukee Admirals (NSH)C/LW4224-50046821125.00%29724.390112140000160052.22%90101000.8200000000
2Ryan CarpenterMilwaukee Admirals (NSH)C/RW4213-5241024113718.18%57819.67101513000012000.00%162000.7600110000
3Aaron NessMilwaukee Admirals (NSH)D4112-9206283412.50%610526.45101314000015000.00%051000.3800000000
4Andrew OglevieMilwaukee Admirals (NSH)C4011-100254020.00%26416.1500000000000028.57%711000.3100000000
5Juuso IkonenMilwaukee Admirals (NSH)RW4011-720584030.00%07318.39011010000000033.33%300000.2700000000
6Kevin PorterMilwaukee Admirals (NSH)C4011-7558710040.00%07819.57011310000140047.46%5951000.2600010000
7Andrew AgozzinoMilwaukee Admirals (NSH)C/LW4101-2002916476.25%16015.1100001000030041.46%4193000.3300000000
8C.J. SmithMilwaukee Admirals (NSH)LW4011-70035125100.00%17318.4001111000000000.00%068000.2700000000
9Mitch ReinkeMilwaukee Admirals (NSH)D4101-222106881212.50%108120.32101210000010000.00%054000.2500110000
10Michael DowningMilwaukee Admirals (NSH)D4011-180422110.00%28320.9500011100006000.00%003000.2400000000
11Robin NorellMilwaukee Admirals (NSH)D4011-420141000.00%05714.440000000000000.00%010000.3500000000
12Jacob LucchiniMilwaukee Admirals (NSH)C/LW4000-120336110.00%15513.930000000001000.00%031000.0000000000
13Gage QuinneyMilwaukee Admirals (NSH)C/LW4000-200011000.00%1328.1800000000010000.00%400000.0000000000
14Eric GrybaMilwaukee Admirals (NSH)D4000-718101988980.00%109423.6400051400009000.00%053000.0000011000
15Mitch CallahanMilwaukee Admirals (NSH)LW/RW4000-500352200.00%57518.75000014000140033.33%302000.0000000000
16Michal MoravcikMilwaukee Admirals (NSH)D4000-500472110.00%16015.0000000000011000.00%002000.0000000000
Team Total or Average6471017-708535728410332616.80%47117318.333472212700021070046.15%2085632000.2900241000
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Pheonix CopleyMilwaukee Admirals (NSH)40400.8444.88209001710953000.000040000
2Stuart SkinnerMilwaukee Admirals (NSH)10000.8246.0030003179000.000004000
Team Total or Average50400.8415.02239002012662000.000044000


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Rookie Weight Height No Trade Available For Trade Force Waivers Contract StatusType Current Salary Salary Cap Salary Cap Remaining Exclude from Salary Cap Link
Aaron NessMilwaukee Admirals (NSH)D291990-05-18 5:28:21 AMNo187 Lbs5 ft10NoNoYes1UFAPro & Farm650,000$0$0$No
Andrew AgozzinoMilwaukee Admirals (NSH)C/LW281991-01-03 12:14:18 PMNo187 Lbs5 ft10NoNoYes1UFAPro & Farm650,000$0$0$No
Andrew OglevieMilwaukee Admirals (NSH)C241995-02-16 3:00:37 PMNo181 Lbs5 ft10NoNoNo1RFAPro & Farm925,000$0$0$No
C.J. SmithMilwaukee Admirals (NSH)LW241994-12-01 8:32:23 AMNo185 Lbs5 ft11NoNoNo1RFAPro & Farm874,125$0$0$No
Eric GrybaMilwaukee Admirals (NSH)D311988-04-14 3:39:05 PMNo227 Lbs6 ft4NoNoYes2UFAPro & Farm700,000$0$0$No
Gage QuinneyMilwaukee Admirals (NSH)C/LW231995-07-29 4:19:43 PMNo201 Lbs5 ft11NoNoNo1RFAPro & Farm715,000$0$0$No
Ilya MikheyevMilwaukee Admirals (NSH)LW/RW241994-10-10 1:36:51 PMNo195 Lbs6 ft2NoNoNo2RFAPro & Farm1$0$0$No
Jacob LucchiniMilwaukee Admirals (NSH)C/LW241995-05-09 5:50:41 AMYes183 Lbs5 ft11NoNoNo1RFAPro & Farm792,500$0$0$No
Juuso IkonenMilwaukee Admirals (NSH)RW241995-01-03 3:15:41 AMNo172 Lbs5 ft10NoNoNo1RFAPro & Farm925,000$0$0$No
Kevin PorterMilwaukee Admirals (NSH)C331986-03-12 12:29:38 PMNo194 Lbs6 ft0NoNoYes1UFAPro & Farm650,000$0$0$No
Marian StudenicMilwaukee Admirals (NSH)RW201998-10-28 3:39:08 AMNo165 Lbs6 ft0NoNoNo1ELCPro & Farm775,833$0$0$No
Michael DowningMilwaukee Admirals (NSH)D241995-05-19 3:42:38 PMNo204 Lbs6 ft3NoNoNo1RFAPro & Farm820,000$0$0$No
Michal MoravcikMilwaukee Admirals (NSH)D241994-12-07 1:11:37 PMNo212 Lbs6 ft4NoNoNo1RFAPro & Farm925,000$0$0$No
Mike CammalleriMilwaukee Admirals (NSH)C/LW361982-06-08 12:29:38 PMNo185 Lbs5 ft9NoNoYes1UFAPro & Farm1$0$0$No
Mitch CallahanMilwaukee Admirals (NSH)LW/RW271991-08-17 5:45:18 AMNo190 Lbs6 ft0NoNoYes2RFAPro & Farm700,000$0$0$No
Mitch ReinkeMilwaukee Admirals (NSH)D231996-02-04 11:13:10 AMNo181 Lbs5 ft11NoNoNo1RFAPro & Farm925,000$0$0$No
Pheonix CopleyMilwaukee Admirals (NSH)G271992-01-18 11:35:03 AMNo196 Lbs6 ft4NoNoYes1RFAFarm Only650,000$0$0$No
Robin NorellMilwaukee Admirals (NSH)D241995-02-18 3:43:28 PMNo194 Lbs5 ft11NoNoNo1RFAPro & Farm717,500$0$0$No
Ryan CarpenterMilwaukee Admirals (NSH)C/RW281991-01-18 4:17:46 PMNo181 Lbs6 ft1NoNoYes1UFAPro & Farm650,000$0$0$No
Scott EansorMilwaukee Admirals (NSH)C231996-01-03 3:19:58 AMNo174 Lbs5 ft9NoNoNo1RFAPro & Farm720,000$0$0$No
Stuart SkinnerMilwaukee Admirals (NSH)G201998-11-01 8:55:53 AMNo207 Lbs6 ft4NoNoNo3ELCFarm Only784,166$0$0$No
Travis BarronMilwaukee Admirals (NSH)LW201998-08-17 2:01:38 PMNo195 Lbs6 ft1NoNoNo1ELCPro & Farm741,666$0$0$No
Vili SaarijarviMilwaukee Admirals (NSH)D221997-05-15 1:04:57 PMNo163 Lbs5 ft10NoNoNo2ELCPro & Farm697,500$0$0$No
Will BorgenMilwaukee Admirals (NSH)D221996-12-19 2:34:27 PMNo179 Lbs6 ft2NoNoNo3ELCPro & Farm864,166$0$0$No
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
2425.17189 Lbs6 ft01.33702,186$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1C.J. SmithKevin PorterJuuso Ikonen40320
2Mitch CallahanMike CammalleriRyan Carpenter40014
3Jacob LucchiniAndrew AgozzinoAndrew Oglevie17410
4Gage QuinneyAndrew OglevieMike Cammalleri3320
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
1Eric GrybaAaron Ness40122
2Mitch ReinkeMichael Downing30122
3Robin NorellMichal Moravcik20122
4Eric GrybaAaron Ness10122
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Mitch CallahanMike CammalleriRyan Carpenter60122
2C.J. SmithKevin PorterJuuso Ikonen40122
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
1Eric GrybaAaron Ness60122
2Mitch ReinkeMichael Downing40122
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
1Mike CammalleriRyan Carpenter60122
2Kevin PorterMitch Callahan40122
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
1Eric GrybaAaron Ness60122
2Mitch ReinkeMichael Downing40122
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
1Mike Cammalleri60122Eric GrybaAaron Ness60122
2Ryan Carpenter40122Mitch ReinkeMichael Downing40122
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
1Mike CammalleriRyan Carpenter60122
2Kevin PorterMitch Callahan40122
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
1Eric GrybaAaron Ness60122
2Mitch ReinkeMichael Downing40122
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Mitch CallahanMike CammalleriRyan CarpenterEric GrybaAaron Ness
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
Mitch CallahanMike CammalleriRyan CarpenterEric GrybaAaron Ness
Extra Forwards
Normal PowerPlayPenalty Kill
Andrew Agozzino, Jacob Lucchini, Gage QuinneyAndrew Agozzino, Jacob LucchiniGage Quinney
Extra Defensemen
Normal PowerPlayPenalty Kill
Robin Norell, Michal Moravcik, Mitch ReinkeRobin NorellMichal Moravcik, Mitch Reinke
Penalty Shots
Mike Cammalleri, Ryan Carpenter, Kevin Porter, Mitch Callahan, C.J. Smith
Goalie
#1 : Pheonix Copley, #2 : Stuart Skinner
Custom OT Lines Forwards
Mike Cammalleri, Ryan Carpenter, Kevin Porter, Mitch Callahan, C.J. Smith, Andrew Agozzino, Andrew Agozzino, Juuso Ikonen, Jacob Lucchini, Andrew Oglevie, Gage Quinney
Custom OT Lines Defensemen
Eric Gryba, Aaron Ness, Mitch Reinke, Michael Downing, Robin Norell


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
OverallHomeVisitor
# VS Team GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Cleveland Monsters40400000720-132020000047-320200000313-1000.00071017002410103382738012647857216318.75%15286.67%0317441.89%357745.45%305752.63%824893346432
Total40400000720-132020000047-320200000313-1000.00071017002410103382738012647857216318.75%15286.67%0317441.89%357745.45%305752.63%824893346432
_Since Last GM Reset40400000720-132020000047-320200000313-1000.00071017002410103382738012647857216318.75%15286.67%0317441.89%357745.45%305752.63%824893346432
_Vs Conference40400000720-132020000047-320200000313-1000.00071017002410103382738012647857216318.75%15286.67%0317441.89%357745.45%305752.63%824893346432

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
40L47101710312647857200
All Games
GPWLOTWOTL SOWSOLGFGA
4040000720
Home Games
GPWLOTWOTL SOWSOLGFGA
202000047
Visitor Games
GPWLOTWOTL SOWSOLGFGA
2020000313
Last 10 Games
WLOTWOTL SOWSOL
040000
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
16318.75%15286.67%0
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
38273802410
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
317441.89%357745.45%305752.63%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
824893346432


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
2 - 2018-09-176Milwaukee Admirals1Cleveland Monsters6LBoxScore
4 - 2018-09-1914Milwaukee Admirals2Cleveland Monsters7LBoxScore
6 - 2018-09-2122Cleveland Monsters3Milwaukee Admirals1LBoxScore
8 - 2018-09-2330Cleveland Monsters4Milwaukee Admirals3LBoxScore



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2
Arena Capacity20001000
Ticket Price5030
Attendance3,8761,852
Attendance PCT96.90%92.60%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueArena CapacityTeam Popularity
36 2864 - 95.47% 180,786$361,572$3000110

Expenses
Year To Date ExpensesPlayers Total SalariesPlayers Total Average SalariesCoaches Salaries
0$ 1,685,246$ 922,084$ 0$
Salary Cap Per DaysSalary Cap To DatePlayers In Salary CapPlayers Out of Salary Cap
0$ 0$ 0 0

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
0$ 0 0$ 0$




OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
Playoff
201840400000720-132020000047-320200000313-10071017002410103382738012647857216318.75%15286.67%0317441.89%357745.45%305752.63%824893346432
201840400000720-132020000047-320200000313-10071017002410103382738012647857216318.75%15286.67%0317441.89%357745.45%305752.63%824893346432
Total Playoff808000001440-2640400000814-640400000626-20014203400482020676547602529417014432618.75%30486.67%06214841.89%7015445.45%6011452.63%165961866812864