´╗┐

Manitoba Moose

GP: 24 | W: 16 | L: 8 | OTL: 0 | P: 32
GF: 105 | GA: 76 | PP%: 27.03% | PK%: 78.10%
GM : Paul Morin | Morale : 99 | Team Overall : 67
Your browser screen resolution is too small for this page. Some information are hidden to keep the page readable.

Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SP
1Bobby RyanXX100.00796089778091917383747370839090040730
2Travis KonecnyXXX100.00756683807098987373727569857373081720
3Derek DorsettX100.00859560757571716976677088808787081720
4Lee StempniakX100.00746091757487876974707069809696057710
5Tim SchallerXX100.00776587718093936681667080807979079710
6Byron Froese (C)X100.00717383717778786585676777777878088690
7Juho Lammikko (R)XX100.00706088727568686783716579757070081680
8Nikolay GoldobinXX100.00636093757274746975677366837373087680
9Travis BoydX100.00616087777166667270747065807373088680
10Pontus AbergXX100.00666091727480806773696866787575088670
11Saku MaenalanenXX100.00696075706663636570657068806262071640
12Daniel OReganXX100.00626077686664646475656767776262082630
13Anthony BitettoX100.00776979727975756865706673768888085690
14Philip MyersX100.00826089728167676765676872788080089680
15Julian Melchiori (A)X100.00676089708163636665666571758484091670
16Griffin ReinhartX100.00626090708061616565656569758282088660
17Samuel MorinX100.00876064707160606565656574757171089660
Scratches
1Zac Dalpe (A)XX100.00678277707765656480646868788080086660
2Kyle CriscuoloX100.00696073666362626074626567756363081620
3Mike VecchioneXX100.00616078656660606069626566756363084610
4Patrick RussellX100.00504550605050506050606060605050025550
5Adam Gaudette (R)X100.00504550605050506050606060605050025550
6Nikolay ProkhorkinX100.00504550605050506050606060605050054550
TEAM AVERAGE100.0068627870716969667066677076737307566
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1Michael Leighton100.0085818187868686868686808989079850
2Jason Kasdorf100.0083808083838180818180806363082790
Scratches
1Felix Sandstrom100.0075757577757575757575757070055740
TEAM AVERAGE100.008179798281818081818078747407279
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary
Keith McCambridge66677074746974CAN432750,000$


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOS GP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Travis KonecnyManitoba Moose (WPG)C/LW/RW24222850153954026114325919.30%1753422.2569151776000084156.37%204648021.8700010640
2Bobby RyanManitoba Moose (WPG)LW/RW241523381140352074164520.27%749220.5431410640110111065.38%26488001.5400000333
3Nikolay GoldobinManitoba Moose (WPG)LW/RW24141428020122362162922.58%1147819.94561120640110522255.26%38348001.1700000115
4Travis BoydManitoba Moose (WPG)C2411142511100162152202921.15%941117.13044364000001246.04%278286001.2200000211
5Derek DorsettManitoba Moose (WPG)RW24812201217090483141122419.51%2245518.98134543112121050046.15%131720000.88004410020
6Lee StempniakManitoba Moose (WPG)RW245141982028225524519.09%742217.622571464000000136.00%25219000.9000000011
7Byron FroeseManitoba Moose (WPG)C244141815432526303762610.81%1138416.030112240001172055.02%289109000.9401212101
8Juho LammikkoManitoba Moose (WPG)LW/RW243111482030443091110.00%2452021.69011352101287100.00%2120000.5400000011
9Pontus AbergManitoba Moose (WPG)LW/RW245712720211145262311.11%432513.55000130000001045.45%11254000.7400000010
10Tim SchallerManitoba Moose (WPG)C/LW24481245220394738112710.53%2145919.1311232300031220050.97%3612215000.5200013000
11Saku MaenalanenManitoba Moose (WPG)LW/RW246511722021134682813.04%730812.86000010001103042.86%14124000.7100000112
12Julian MelchioriManitoba Moose (WPG)D2435819601525116427.27%2539416.4200007000019000.00%0315000.4100000000
13Anthony BitettoManitoba Moose (WPG)D2426811752546302818107.14%4757824.12101249112362000.00%0426000.2800122002
14Philip MyersManitoba Moose (WPG)D24167720353417795.88%3246219.28112222000184100.00%0329000.3000000000
15Samuel MorinManitoba Moose (WPG)D2423573804332159813.33%3045619.0200000000176000.00%0018000.2200000001
16Daniel OReganManitoba Moose (WPG)C/LW15033120376120.00%0734.9100000000000050.00%1400000.8200000000
17Griffin ReinhartManitoba Moose (WPG)D200337006147210.00%71768.850000000008000.00%005000.3400000000
18Zac DalpeManitoba Moose (WPG)C/RW11011411571010360.00%1676.1500000000150045.00%2020000.3000100000
Team Total or Average40610517728215448217047144068822639215.26%282700317.25203252825913472567216651.43%1295294204020.81018917141517
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Michael LeightonManitoba Moose (WPG)2416620.9033.0914360074763409210.0000240121
2Jason KasdorfManitoba Moose (WPG)10000.8573.331800173000.0000024000
Team Total or Average2516620.9033.1014540075770412210.00002424121


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Rookie Weight Height No Trade Available For Trade Force Waivers Contract StatusType Current Salary Salary Cap Salary Cap Remaining Exclude from Salary Cap Link
Adam GaudetteManitoba Moose (WPG)C221996-10-03 12:39:35 PMYes170 Lbs6 ft1NoNoNo2ELCPro & Farm916,666$0$0$No
Anthony BitettoManitoba Moose (WPG)D281990-07-15 5:33:51 AMNo209 Lbs6 ft1NoNoYes2UFAPro & Farm650,000$0$0$No
Bobby RyanManitoba Moose (WPG)LW/RW321987-03-17 6:29:38 PMNo207 Lbs6 ft2NoNoYes1UFAPro & Farm7,250,000$0$0$No
Byron FroeseManitoba Moose (WPG)C281991-03-12 10:18:35 AMNo198 Lbs6 ft0NoNoYes1UFAPro & Farm650,000$0$0$No
Daniel OReganManitoba Moose (WPG)C/LW251994-01-30 4:58:38 AMNo176 Lbs5 ft10NoNoNo2RFAPro & Farm874,125$0$0$No
Derek DorsettManitoba Moose (WPG)RW321986-12-20 4:23:32 PMNo192 Lbs6 ft0NoNoYes1UFAPro & Farm2,650,000$0$0$No
Felix SandstromManitoba Moose (WPG)G221997-01-12 3:43:07 AMNo192 Lbs6 ft2NoNoNo3ELCFarm Only792,500$0$0$No
Griffin ReinhartManitoba Moose (WPG)D251994-01-24 3:05:12 PMNo216 Lbs6 ft4NoNoYes1RFAPro & Farm800,000$0$0$No
Jason KasdorfManitoba Moose (WPG)G271992-05-08 1:14:17 PMNo172 Lbs6 ft3NoNoYes1RFAFarm Only612,500$0$0$No
Juho LammikkoManitoba Moose (WPG)LW/RW231996-01-29 1:37:53 PMYes191 Lbs6 ft2NoNoNo1RFAPro & Farm717,500$0$0$No
Julian MelchioriManitoba Moose (WPG)D271991-12-06 6:10:20 AMNo214 Lbs6 ft5NoNoYes1RFAPro & Farm700,000$0$0$No
Kyle CriscuoloManitoba Moose (WPG)C271992-05-05 1:13:31 PMNo170 Lbs5 ft8NoNoYes1RFAPro & Farm650,000$0$0$No
Lee StempniakManitoba Moose (WPG)RW361983-02-04 6:29:38 PMNo194 Lbs5 ft11NoNoYes1UFAPro & Farm650,000$0$0$No
Michael LeightonManitoba Moose (WPG)G381981-05-19 2:49:24 AMNo185 Lbs6 ft3NoNoYes1UFAPro & Farm650,000$0$0$No
Mike VecchioneManitoba Moose (WPG)C/RW261993-02-25 12:40:21 PMNo195 Lbs5 ft10NoNoNo2RFAPro & Farm900,000$0$0$No
Nikolay GoldobinManitoba Moose (WPG)LW/RW231995-10-07 12:42:44 PMNo181 Lbs5 ft11NoNoNo2RFAPro & Farm863,333$0$0$No
Nikolay ProkhorkinManitoba Moose (WPG)LW251993-09-17 3:38:07 PMNo190 Lbs6 ft3NoNoNo2RFAPro & Farm1$0$0$No
Patrick RussellManitoba Moose (WPG)RW261993-01-04 1:18:49 PMNo205 Lbs6 ft1NoNoNo1RFAPro & Farm700,000$0$0$No
Philip MyersManitoba Moose (WPG)D221997-01-25 1:17:04 PMNo209 Lbs6 ft7NoNoNo1ELCPro & Farm648,333$0$0$No
Pontus AbergManitoba Moose (WPG)LW/RW251993-09-23 8:52:06 AMNo196 Lbs5 ft11NoNoYes1RFAPro & Farm650,000$0$0$No
Saku MaenalanenManitoba Moose (WPG)LW/RW241994-05-29 3:46:05 AMNo185 Lbs6 ft3NoNoNo1RFAPro & Farm925,000$0$0$No
Samuel MorinManitoba Moose (WPG)D231995-07-12 2:53:23 PMNo225 Lbs6 ft7NoNoYes2RFAPro & Farm700,000$0$0$No
Tim SchallerManitoba Moose (WPG)C/LW281990-11-16 1:48:15 PMNo218 Lbs6 ft2NoNoYes1UFAPro & Farm1,900,000$0$0$No
Travis BoydManitoba Moose (WPG)C251993-09-14 3:38:12 PMNo183 Lbs5 ft11NoNoYes2RFAPro & Farm800,000$0$0$No
Travis KonecnyManitoba Moose (WPG)C/LW/RW221997-03-11 9:03:51 AMNo176 Lbs5 ft10NoNoNo1ELCPro & Farm894,166$0$0$No
Zac DalpeManitoba Moose (WPG)C/RW281990-11-01 6:29:38 AMNo194 Lbs6 ft1NoNoYes1UFAPro & Farm725,000$0$0$No
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
2626.50194 Lbs6 ft11.381,087,274$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Travis KonecnyByron FroeseBobby Ryan42014
2Nikolay GoldobinTravis BoydLee Stempniak32014
3Pontus AbergTim SchallerSaku Maenalanen18014
4Daniel OReganTravis KonecnyBobby Ryan8005
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
1Juho LammikkoAnthony Bitetto39131
2Derek DorsettSamuel Morin34230
3Philip MyersJulian Melchiori19041
4Anthony BitettoGriffin Reinhart8122
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Nikolay GoldobinTravis KonecnyLee Stempniak75005
2Pontus AbergTravis KonecnyDerek Dorsett25122
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
1Travis BoydBobby Ryan75005
2Juho LammikkoAnthony Bitetto25122
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
1Tim SchallerDerek Dorsett75140
2Byron FroeseBobby Ryan25140
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
1Juho LammikkoSamuel Morin60140
2Philip MyersAnthony Bitetto40122
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
1Tim Schaller60140Derek DorsettAnthony Bitetto60122
2Juho Lammikko40140Philip MyersJulian Melchiori40122
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
1Byron FroeseTim Schaller60050
2Pontus AbergSaku Maenalanen40005
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
1Samuel MorinAnthony Bitetto60122
2Philip MyersJulian Melchiori40122
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Bobby RyanTravis KonecnyNikolay GoldobinTravis BoydAnthony Bitetto
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
Tim SchallerByron FroeseDerek DorsettJuho LammikkoAnthony Bitetto
Extra Forwards
Normal PowerPlayPenalty Kill
Saku Maenalanen, Lee Stempniak, Nikolay GoldobinLee Stempniak, Byron FroeseNikolay Goldobin
Extra Defensemen
Normal PowerPlayPenalty Kill
Julian Melchiori, Samuel Morin, Philip MyersJulian MelchioriSamuel Morin, Philip Myers
Penalty Shots
Bobby Ryan, Juho Lammikko, Travis Konecny, Derek Dorsett, Tim Schaller
Goalie
#1 : Michael Leighton, #2 : Jason Kasdorf
Custom OT Lines Forwards
Bobby Ryan, Nikolay Goldobin, Travis Konecny, Derek Dorsett, Tim Schaller, Lee Stempniak, Lee Stempniak, Byron Froese, Juho Lammikko, Daniel ORegan, Travis Boyd
Custom OT Lines Defensemen
Samuel Morin, Anthony Bitetto, Philip Myers, Julian Melchiori,


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
OverallHomeVisitor
# VS Team GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Chicago Wolves4400000024618220000001331022000000113881.0002440640042263521092562052225136501157811436.36%15193.33%123345750.98%25850051.60%17533951.62%518315555201382191
2Cleveland Monsters7430000030264330000001385413000001718-180.57130538300422635218425620522252298411013329517.24%35974.29%223345750.98%25850051.60%17533951.62%518315555201382191
3San Diego Gulls64200000242223210000013112321000001111080.66724416510422635218125620522251886813511713430.77%25676.00%023345750.98%25850051.60%17533951.62%518315555201382191
4Toronto Marlies74300000272254310000017116312000001011-180.57127437000422635221425620522252188012814421733.33%30776.67%023345750.98%25850051.60%17533951.62%518315555201382191
Total24168000001057629121020000056332312660000049436320.6671051772821042263526882562052225771282488472742027.03%1052378.10%323345750.98%25850051.60%17533951.62%518315555201382191
_Since Last GM Reset24168000001057629121020000056332312660000049436320.6671051772821042263526882562052225771282488472742027.03%1052378.10%323345750.98%25850051.60%17533951.62%518315555201382191
_Vs Conference1712500000785424871000003922179540000039327240.706781342121042263524742562052225553202360328531324.53%751678.67%323345750.98%25850051.60%17533951.62%518315555201382191

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
2432W110517728268877128248847210
All Games
GPWLOTWOTL SOWSOLGFGA
24168000010576
Home Games
GPWLOTWOTL SOWSOLGFGA
1210200005633
Visitor Games
GPWLOTWOTL SOWSOLGFGA
126600004943
Last 10 Games
WLOTWOTL SOWSOL
611200
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
742027.03%1052378.10%3
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
25620522254226352
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
23345750.98%25850051.60%17533951.62%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
518315555201382191


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
2 - 2018-09-177Chicago Wolves2Manitoba Moose10WBoxScore
4 - 2018-09-1915Chicago Wolves1Manitoba Moose3WBoxScore
6 - 2018-09-2123Manitoba Moose6Chicago Wolves1WBoxScore
8 - 2018-09-2331Manitoba Moose5Chicago Wolves2WBoxScore
16 - 2018-10-0160Manitoba Moose5Cleveland Monsters6LBoxScore
18 - 2018-10-0364Manitoba Moose6Cleveland Monsters7LBoxScore
20 - 2018-10-0568Cleveland Monsters4Manitoba Moose5WXBoxScore
22 - 2018-10-0772Cleveland Monsters2Manitoba Moose3WBoxScore
24 - 2018-10-0976Manitoba Moose2Cleveland Monsters3LBoxScore
26 - 2018-10-1180Cleveland Monsters2Manitoba Moose5WBoxScore
28 - 2018-10-1384Manitoba Moose4Cleveland Monsters2WBoxScore
29 - 2018-10-1486Manitoba Moose2San Diego Gulls5LBoxScore
31 - 2018-10-1688Manitoba Moose5San Diego Gulls4WBoxScore
33 - 2018-10-1890San Diego Gulls6Manitoba Moose4LBoxScore
35 - 2018-10-2092San Diego Gulls1Manitoba Moose4WBoxScore
37 - 2018-10-2294Manitoba Moose4San Diego Gulls2WBoxScore
39 - 2018-10-2496San Diego Gulls4Manitoba Moose5WXBoxScore
42 - 2018-10-2799Toronto Marlies2Manitoba Moose5WBoxScore
44 - 2018-10-29100Toronto Marlies2Manitoba Moose5WBoxScore
46 - 2018-10-31101Manitoba Moose4Toronto Marlies3WBoxScore
48 - 2018-11-02102Manitoba Moose3Toronto Marlies4LXBoxScore
50 - 2018-11-04103Toronto Marlies6Manitoba Moose3LBoxScore
52 - 2018-11-06104Manitoba Moose3Toronto Marlies4LXBoxScore
54 - 2018-11-08105Toronto Marlies1Manitoba Moose4WBoxScore



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2
Arena Capacity20001000
Ticket Price5030
Attendance23,83611,922
Attendance PCT99.32%99.35%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueArena CapacityTeam Popularity
26 2980 - 99.33% 150,178$1,802,130$3000110

Expenses
Year To Date ExpensesPlayers Total SalariesPlayers Total Average SalariesCoaches Salaries
0$ 2,826,912$ 797,500$ 0$
Salary Cap Per DaysSalary Cap To DatePlayers In Salary CapPlayers Out of Salary Cap
0$ 0$ 0 0

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
0$ 0 0$ 0$




OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
Playoff
201824168000001057629121020000056332312660000049436321051772821042263526882562052225771282488472742027.03%1052378.10%323345750.98%25850051.60%17533951.62%518315555201382191
201824168000001057629121020000056332312660000049436321051772821042263526882562052225771282488472742027.03%1052378.10%323345750.98%25850051.60%17533951.62%518315555201382191
Total Playoff483216000002101525824204000001126646241212000009886126421035456420845270413765124104441015425649769441484027.03%2104678.10%646691450.98%516100051.60%35067851.62%10366301111402765382